(ii) Fe³⁺ + **3**e⁻ Fe

Ignore state symbols Do not penalise absence of charge on electron Credit $Fe^{3+} \longrightarrow Fe - 3e^{-}$ Credit multiples 1

1

1

(b) (i) Because (one of the following)

CO is not the only product **OR** Reference to "incomplete combustion to form CO" does not answer the question

(Some) complete combustion (also)occurs OR

CO₂ is (also) formed

Further oxidation occurs

 (ii) The <u>enthalpy change</u> / <u>heat (energy) change at constant pressure</u> in a reaction is <u>independent of the route / path taken</u> (and depends only on the initial and final states)

(iii) M1 The <u>enthalpy change</u> / <u>heat change at constant pressure</u> when <u>1 mol</u>of a compound / substance / element For M1, credit correct reference to molecule/s or atom/s

- M2 is <u>burned completely</u> / <u>undergoes complete combustion</u> in (excess) <u>oxygen</u>
- M3 with <u>all reactants and products / all substances in standard states</u> For M3 Ignore reference to 1 atmosphere

OR <u>all reactants and products / all substances in normal / specified states</u> <u>under standard conditions</u> / 100 kPa / 1 bar <u>and</u> specified T / 298 K

- 3
- (c) M1 (could be scored by a correct mathematical expression which <u>must</u> have <u>all ΔH </u> symbols and the Σ)

Correct answer gains full marks Credit 1 mark ONLY for –1 (kJ mol⁻¹)

M1 $\Delta H_r = \sum \Delta H_r$ (products) $-\sum \Delta H_r$ (reactants) Credit 1 mark ONLY for -27 (kJ mol⁻¹) i.e. assuming value for Fe(I) = 0

OR correct cycle of balanced equations with 2Fe, 3C and 3O₂

M2 $\Delta H_r = 2(+14) + 3(-394) - (-822) - 3(-111)$

= 28 - 1182 + 822 + 333

(This also scores M1)

M3 = (+) 1 (kJ mol⁻¹)

(Award 1 mark ONLY for – 1)

(Award 1 mark ONLY for – 27)

For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with 2Fe, 3C and 3O₂ OR a clear statement of M1 which could be in words and scores <u>only M1</u>

3

(d) (i) $C(s) + O_2(g) CO_2(g)$ State symbols essential Possible to include C(s, graphite)

1

(ii) These two enthalpy changes are for <u>the same reaction / same equation /</u> <u>same reactants and products</u>

Penalise reference to CO₂ being produced by a different route

OR

They <u>both make one mole of carbon dioxide only from carbon and oxygen</u> (or this idea clearly implied) *"both form CO₂" is not sufficient (since other products might*

occur e.g.CO)

OR

The same number and same type of bonds are broken and formed

[12]

1

M2. (a) One from

- Ti is not produced
- TiC / <u>carbide</u> is produced OR titanium reacts with carbon
- Product is brittle
- Product is a poor engineering material Penalise "titanium carbonate" Ignore "impure titanium" Credit "titanium is brittle"

(b) <u>Heat</u> (energy) <u>change at constant pressure</u> **QoL**

(c) The <u>enthalpy change</u> in a reaction is independent of the route taken (and depends only on the initial and final states) Credit "heat change at constant pressure" as an alternative to "enthalpy change"

1

1

1

 (d) M1 The <u>enthalpy change</u> / <u>heat change at constant pressure</u> when <u>1 mol</u> of a compound / substance / product For M1, credit correct reference to molecule/s or atom/s

M2 is formed from its (constituent) elements

M3 with all reactants and products / all substances in

standard states

OR all <u>reactants and products / all substances in normal</u> <u>states under standard conditions</u> / 100 kPa / 1 bar <u>and</u> any specified T (usually 298 K) *Ignore reference to 1 atmosphere*

3

(e) (i) Na / it is not in its <u>standard state</u> / <u>normal state under</u> <u>standard conditions</u>

OR

<u>Standard state</u> / <u>normal state under standard conditions</u> for Na is solid / (s)

QoL

Ignore "sodium is a liquid or sodium is not a solid"

1

(ii) M1 $\triangle H_r = \sum \Delta H_r$ (products) - $\sum \Delta H_r$ (reactants)

M3 = **−936** (kJ mol⁻¹)

Correct answer gains full marks

Credit 1 mark for + 936 (kJ mol⁻¹)

Credit 1 mark for – 924 (kJ mol⁻¹)*i.e.* assuming value for Na(I) = 0

For other incorrect or incomplete answers, proceed as follows

• check for an arithmetic error (AE), which is either

a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)

• If no AE, check for a correct method; this requires either a correct cycle with 2Cl₂ and 4Na OR a clear complete statement of M1 which could be in words and scores <u>only M1</u>

3

1

(iii) Reducing agent

Ignore "reduces titanium"

OR reductant OR reduces TiCl₄

OR electron donor

M3. (a) <u>Heat (energy) change at constant pressure</u> Ignore references to standard conditions, but credit specified pressure.

(b) The <u>enthalpy change/heat (energy) change</u> (at constant pressure) in a reaction is independent of the route/path taken (and depends only on the initial and final states)

(c) $\Delta H + 963 = -75 - 432 \text{ OR } \Delta H + 963 = -507 \text{ (M1)}$

 $\Delta H = -75 - 432 - 963$ (**M1** and **M2**)

 $\Delta H = -1470$ (kJ mol⁻¹)

Award 1 mark for + 1470
<u>Award full marks for correct answer</u>
Ignore units.
Ignore numbers on the cycle **M1** and **M2** can score for an arithmetic error

M4. (a) <u>Enthalpy change</u> for the formation of <u>1 mol</u> of <u>gaseous atoms</u> allow <u>heat energy change</u> for <u>enthalpy change</u>

> From the <u>element</u> (in its standard state) ignore reference to conditions

1

1

3

1

1

	Enthalpy change to separate <u>1 mol</u> of an <u>ionic</u> lattice/solid/compound enthalpy change not required but penalise energy		4
	Into (its c	omponent) <u>gaseous ions</u> mark all points independently	1
(b)	$\Delta H_{L} = \Delta h$	H _r + ΔH _a + I.E. + 1/2E(CI-CI) + EA Or correct Born-Haber cycle drawn out	1
	= +411 + 109 + 494 + 121 – 364		1
	= +771 (k	kJ mol ⁻¹) -771 scores 2/3 +892 scores 1/3 -51 scores 1/3 -892 scores zero +51 scores zero ignore units	1
(c)	()	This are perfect spheres (or point charges) by electrostatic attraction/no covalent interaction mention of molecules/intermolecular forces/covalent bonds CE = 0 allow ionic bonding <u>only</u> If mention of atoms $CE = 0$ for M2	1
	(ii) Ion	ic Allow no covalent character/bonding	1
	(iii) lor	nic with additional covalent bonding Or has covalent character/partially covalent Allow mention of polarisation of ions or description of polarisation	1

M5. (a) The molecular ion is

• The <u>molecule</u> with one/an electron knocked off/lost Ignore the highest or biggest m/z <u>peak</u>

OR

• The molecule with a (single) positive charge

OR

• the <u>ion</u> with/it has the largest/highest/biggest <u>m/z</u> (value/ratio) Ignore "the peak to the right"

OR

• the <u>ion</u> with/it has an m/z equal to the *M*, *Ignore "compound"*

(b) (i) <u>2(14.00307) + 15.99491</u> = <u>44.00105</u> <u>A sum is needed</u> to show this

1

1

(ii) <u>Propane/C₃H₈ and carbon dioxide/CO₂ (and N₂O) or they or both the gases/molecules or all three gases/molecules have an (imprecise) *M*_r of 44.0 (OR 44)
</u>

OR

they have the same *M*, or molecular mass (to one d.p) This could be shown in a calculation of relative masses for propane <u>and</u> carbon dioxide

1

(iii) <u>By definition</u>

OR

The <u>standard/reference</u> (value/isotope) Ignore "element"

(c) (i) M1 (could be scored by a correct mathematical expression)

 $\underline{\Delta H} = \underline{\Sigma \Delta H}_{\text{products}} - \underline{\Sigma \Delta H}_{\text{reactants}}$

OR a correct cycle of balanced equations

M1 and M2 can be scored with correct moles as follows $\Delta H + 2(-46) = +82 + 3(-286)$

 $\Delta H - 92 = -776$

Δ*H* = 92 – 776 OR 92 + 82 – 858

М3

 $\Delta H = -684$ (kJ mol⁻¹) (This is worth 3 marks)

Award 1 mark ONLY for + 684 Full marks for correct answer. Ignore units.

Deduct one mark for an arithmetic error.

3

1

(ii) The value is quoted at a pressure of <u>100 kPa OR 1 bar</u> or <u>10⁵ Pa</u>

OR

<u>All reactants and products</u> are in their <u>standard states/their normal</u> <u>states at 100 kPa or 1 bar</u>

Ignore 1 atmosphere/101 kPa Ignore "constant pressure"

[8]